Python Forensics

tutorialspoint

S I MPLY EASY LEARNINILG

www.tutorialspoint.com

n https://www.facebook.com/tutorialspointindia J https://twitter.com/tutorialspoint

Python Forensics

About the Tutonal

Python has built-in capabilities to support digital investigation and protect the integrity of
evidence during an investigation. In this tutorial, we will explain the fundamental concepts of
applying Python in computational (digital) forensics that includes extracting evidence, collecting
basic data, and encryption of passwords as required.

Audience

This tutorial is meant for all those readers who seek to increase their understanding in digital or
computational forensics through the use of Python. It will help you understand how to integrate
Python in computational forensics.

Prerequisites

Before starting with this tutorial, it is important that you understand the basic concepts of
computational forensics. And, it will definitely help if you have prior exposure to Python.

Copyright & Disclaimer

© Copyright 2017 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I) Pvt.
Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish any
contents or a part of contents of this e-book in any manner without written consent of the
publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as
possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt. Ltd.
provides no guarantee regarding the accuracy, timeliness or completeness of our website or its
contents including this tutorial. If you discover any errors on our website or in this tutorial,
please notify us at contact@tutorialspoint.com

tutorialspoint

EIMPLYEAEYLEARMING

&

mailto:contact@tutorialspoint.com

Python Forensics

Table of Contents
Y e T T UL 4 V=T T oY - | N i
AUIBNCE ..cceeeieieiieereeeeeereeeeeeeeeessesssns i
PO R OUISIEES ceuurriiiiiiiiienniiiiiiiittenniietiiteennsssisessiresnnsssssssssssssnsssssssssssssnssssssssssssnnssssssssssssnnnsssssssssssnnnssssssssssnnnnnssssss i
(oY o) T A R D T o - 111 11T RPNt i
JLIE 1+ 1L 0o T =T 43N i
1. PYTHON FORENSICS — INTRODUCTION....cciiiiiiiiiririiiiiresisesisssssesssssssssssess s s s s s s s ssssssssnsnsssssnsnsnnnen 1
2. PYTHON FORENSICS — INSTALLATION OF PYTHON......cccieiiieeeeee e e ee e e e 2
3. PYTHON FORENSICS — OVERVIEW OF PYTHONcccutiiiiiiiiiiiiiiiiirieeeeeieeneeeseeesescnearsssesrassssnnsssnssnsnnes 5
4. PYTHON FORENSICS — BASIC FORENSIC APPLICATION ... s 7
5. PYTHON FORENSICS — HASH FUNCTIONcoiiiiiiiiiiiiieieieieieieeeeeeeeeeeeeeeeseneecaesesenessassssssssssssssssssnnnnns 9
6. PYTHON FORENSICS — CRACKING AN ENCRYPTIONccuuuiuieieieinieieieieeneneneneneneneneeenmnessnmnessnsnsnnnes 12
7. PYTHON FORENSICS — VIRTUALIZATIONccvttiiirieieeeieeeeeieeeeeieeeeaeeeseseersesenrssnesmssssssssssssssssssssssnnnns 14
8. PYTHON FORENSICS — NETWORK FORENSICS.coottiiiiiiiiiiiiieieieieieieeeeeeeeeeeenesesenenrssnesssnsnsnssssnnnns 17
9. PYTHON FORENSICS — PYTHON MODULES.........otttitiiiiiiiiieieieieieeneeieeeeseeeeeeeeenesrnenenrarsssssssnssssssnnnns 20
1 0T o T QY = =T 1 3 = o 1 20
From...import StatEMENT ... e s e e s s e e s na s sse s s s s e s nansssssssensennssssssssseeennanssssssneesnnnnes 21
10. PYTHON FORENSICS — DSHELL AND SCAPY ... e s s s s s s s s s s s s s s s s s e s e s s s 22
11. PYTHON FORENSICS — SEARCHINGcccoiirireieeieiiiriiiineeene e e sesnnrenenese s s sesanennnesesesssessnssnsenesessnes 25
12. PYTHON FORENSICS — INDEXINGcooiiiiuurirereeesiririiueneneeeeesesesnenenenesesssesessnesenesessssssssnsnsnenesessses 26
13. PYTHON FORENSICS — PYTHON IMAGING LIBRARYuutttiriiiiiiiiiirinereeesesesineneneeesssesesnsnenesesessnes 27

'&j ' tutorialspoint

LYEAEYLEARMING

14.

15.

16.

17.

18.

19.

20.

Python Forensics

PYTHON FORENSICS —MOBILE FORENSICS......ccooiiiiiteeee et sesinerereee e e s sesmneneneeesenes 29
PYTHON FORENSICS — NETWORK TIME PROTOQCOLccctttttiiiriiiereeeeereneninerereeeeesesesnineneeeeesenes 31
INStalling the NTP LIBrary ..cc..ueeeeeiiiiiiiiiiieiiiiiiiiiereeniinsnestees s ssssssssre s sssss e s s s s sasss e e s s ss s ssnnsss s s sssssnnns 32
PYTHON FORENSICS — MULTIPROCESSING SUPPORT.....cctttttiiriirerteeeenenercinereneeeeeseserneneeeeesenes 34
PYTHON FORENSICS — MEMORY & FORENSICS......cccoctteiiriiiireriirireeenieneeesiereeesseneeesesineeesssnenes 36
VOlatile IMEIMOTY ..ccevveeeeieeieeeeeeeeeeeeeeeeeess 36
YARA RUIES .ceeiiiniiiiiiiiiiiiiiitiiiinttiiiieteissnteiessstessesssnesesssnessesssnesssssssesesssnessesssnessssssnesesssnessesssnessssssnesessanssssssnns 36
PYTHON FORENSICS — FORENSICS IN LINUX ...coiiiitteeee et n e s s s neneneee s e 39
PYTHON FORENSICS — INDICATORS OF COMPROMISE.......ccoiiiiiireeeeeeeeerirereee e s seinereeeeeeeees 42
PYTHON FORENSICS — IMPLEMENTATION OF CLOUD.....cccceitiiiiinireeeeeeenerirereee e e s e seinereeeeeaeees 44

w ' tutorialspoint

LYEAEYLEARMING

1. Python Forensics — Introduction

Python is a general-purpose programming language with easy, readable code that can be
easily understood by both professional developers as well as novice programmers. Python
comprises of many useful libraries that can be used with any stack framework. Many
laboratories rely on Python to build basic models for predictions and to run experiments.
It also helps to control critical operational systems.

Python has built-in capabilities to support digital investigation and protect the integrity of
evidence during an investigation. In this tutorial, we will explain the fundamental concepts
of applying Python in digital or computation forensics.

What is Computational Forensics?

Computational Forensics is an emerging research domain. It deals with solving forensic
problems using digital methods. It uses computational science to study digital evidence.

Computation Forensics includes a broad range of subjects which has objects, substances,
and processes investigated, mainly based on pattern evidence, such as toolmarks,
fingerprints, shoeprints, documents etc., and also includes physiological and behavioral
patterns, DNA, and digital evidence at crime scenes.

The following diagram shows the broad range of subjects covered under Computational
Forensics.

Computational
Forensics

Behavioral
evidences

Pattern
evidences

| DNA
Documents

Toolmarks

Crime scenes

Fingerprints/ Digital
Shoeprints Evidence

Computational forensics is implemented with the help of some algorithms. These
algorithms are used for signal and image processing, computer vision and graphics. It also
includes data mining, machine learning, and robotics.

Computational forensics involves diverse digital methods. The best solution to ease all
digital methods in forensics is to use a general-purpose programming language like
Python.

I@’ tutorialspoint

EIMPLYEAEYLEARRMINEG

2. Python Forensics — Installation of Python

As we need Python for all the activities of computational forensics, let us move step by
step and understand how to install it.

Step 1: Go to https://www.python.org/downloads/ and download the installation files of
Python according to the Operating System you have on your system.

< C | & Python Sottware Foundation (USH | Wt //www,python.otg | o

Python

e python .

About Downloads Documentation Community Success Storles News Events

Wondering which version to use? Here's more about the difference

- —
' N \ "
Download the latest version for Windows f \g \ . '
1 ‘. \)’ "

Want to help test development versions of Python? Pre releas

Step 2: After downloading the package/installer, click on the exe file to start the
installation process.

Cpen File - Security Waming =
Do you want to run this file? i
o Name: C\Users\Sif-2551\Downloads\python-2.7.12.msi '
? Publisher- hon i ion l

Type: Windows Installer Package
From: C\Users\Sif-2551\Downloads\python-2.7.12.msi |

[Rn][Conce |

| V] Always ask before opening this file

’ 2 While files from the Intemet can be useful, this file type can
W8 potentially harm your computer. Only run software from publishers
| % youtrust, What's the risk?

I@’ tutorialspoint

EIMPLYEAEYLEARRMINEG

https://www.python.org/downloads/

Python Forensics

You will get to see the following screen after the installation is complete.

) Python 2.7.12 Setup

el

python

for

windows

Complete the Python 2.7.12 Installer

Special Windows thanks to:

Mark Hammond, without whose years of freely
shared Windows expertise, Python for Windows

would still be Python for DOS.

Click the Finish button to exit the Installer.

' < Back ||__Finish

| Cancel |

Step 3: The next step is to set the environment variables of Python in your system.

[
System Properties = |
| Computer Name: | Hardware | Advanced | System Protection | Remote |
's | R
Environment Variables .__53 |
7 = IR
Edit System Variable { x|
Variable name: Path
Variable value: I\ 1.0\;C: Python27;C:\Program Files (x86
Lok [concel |
A v,
System variables
Variable Value =
Path C:\ProgramData\Orade\Java\javapath;... I
PATHEXT .COM; .EXE; .BAT;.CMD;.VBS;.VBE;.JS;.... i
PROCESSOR_A... AMD64
PROCESSOR_ID... Intel64Family 6 Model 61 Stepping 4, G... ™
| New.. || Edt. || Delete |
] oK Cancel -
£ o) (o] |
. o
3
I@’ tutorialspoint

Python Forensics

Step 4: Once the environment variables are set, type the command "python" on the
command prompt to verify whether the installation was successful or not.

If the installation was successful, then you will get the following output on the console.

C:\Windows\system32\cmd.exe - python = = %

\Users\Sif—-2551>python

Python 2.7.12 (v2.7.12:d33eBcf?1556.,. Jun 27 2016, 15:19:22)> [MSC v.1580 32 hit (g

Intel>] on win32 o
Y, Y"copyright', ‘“credits" or "license"' for more information.

@I tutorialspoint

3. Python Forensics — Overview of Python

The codes written in Python look quite similar to the codes written in other conventional
programming languages such as C or Pascal. It is also said that the syntax of Python is
heavily borrowed from C. This includes many of the Python keywords which are similar to
C language.

Python includes conditional and looping statements, which can be used to extract the data
accurately for forensics. For flow control, it provides if/else, while, and a high-level for
statement that loops over any "iterable" object.

if a < b:
max = b
else:

max

a

The major area where Python differs from other programming languages is in its use of
dynamic typing. It uses variable names that refer to objects. These variables need not
be declared.

Data Types

Python includes a set of built-in data types such as strings, Boolean, numbers, etc. There
are also immutable types, which means the values which cannot be changed during the
execution.

Python also has compound built-in data types that includes tuples which are immutable
arrays, lists, and dictionaries which are hash tables. All of them are used in digital
forensics to store values while gathering evidence.

Third-party Modules and Packages

Python supports groups of modules and/or packages which are also called third-party
modules (related code grouped together in a single source file) used for organizing
programs.

Python includes an extensive standard library, which is one of the main reasons for its
popularity in computational forensics.

Life Cycle of Python Code

e Atfirst, when you execute a Python code, the interpreter checks the code for syntax
errors. If the interpreter discovers any syntax errors, then they are displayed
immediately as error messages.

e If there are no syntax errors, then the code is compiled to produce a bytecode
and sent to PVM (Python Virtual Machine).

e The PVM checks the bytecode for any runtime or logical errors. In case the PVM
finds any runtime errors, then they are reported immediately as error messages.

e If the bytecode is error-free, then the code gets processed and you get its output.

I@’ tutorialspoint

EIMPLYEAEYLEARRMINEG

Python Forensics

The following illustration shows in a graphical manner how the Python code is first
interpreted to produce a bytecode and how the bytecode gets processed by the PVM to
produce the output.

Python code Syntax Checker | Syntax error messages
and Translator

Byte code

User inputs Python Virtual | Other error messages
Machine (PVM)

Program
outputs

@tutm‘ialspoint

4. Python Forensics — Basic Forensic Application

For creating an application as per the Forensic guidelines, it is important to understand
and follow its naming conventions and patterns.

Naming Conventions

During the development of Python forensics applications, the rules and conventions to be
followed are described in the following table.

Uppercase with underscore

Constants A
separation

Example: HIGH_TEMPERATURE

Local variable | Lowercase with bumpy caps Example: currentTemperature

name (underscores are optional)
Global Prefix gl lowercase with bumpy caps Example:
variable name | (underscores are optional) gl_maximumRecordedTemperature
Funcions | (PPSTCESE NI BUTEY CoBS e | Example
name P ConvertFarenheitToCentigrade(...)

voice

Object name | Prefix ob_ lowercase with bumpy caps Example: ob_myTempRecorder

An underscore followed by lowercase

Module with bumpy caps

Example: _tempRecorder

Prefix class_ then bumpy caps and

Class names keep brief

Example: class_TempSystem

Let us take a scenario to understand the importance of naming conventions in
Computational Forensics. Suppose we have a hashing algorithm that is normally used for
encrypting data. The one-way hashing algorithm takes input as a stream of binary data;
this could be a password, a file, binary data, or any digital data. The hashing algorithm
then produces a message digest (md) with respect to the data received in the input.

It is practically impossible to create a new binary input that will generate a given message
digest. Even a single bit of the binary input data, if changed, will generate a unique
message, which is different than the previous one.

Example

Take a look at the following sample program which follows the above-mentioned
conventions.

import sys, string, md5 # necessary libraries
print "Please enter your full name"
line = sys.stdin.readline()

line

line.rstrip()

md5_object = md5.new()

I@’ tutorialspoint

EIMPLYEAEYLEARRMINEG

Python Forensics

md5_object.update(line)
print md5_object.hexdigest() # Prints the output as per the hashing algorithm i.e. md5

exit

The above program produces the following output.

@ C\Windows\system32\cmd.exe

@D:\Python code>python bhasicforensic.py
iPlease enter your full name
iradhikaomkardatar
706462c6f20024%9ce?7?hd1623e3aebff

D:\Python code> i

In this program, the Python script accepts the input (your full name) and converts it as
per the md5 hashing algorithm. It encrypts the data and secures the information, if
required. As per forensic guidelines, the name of evidences or any other proofs can be
secured in this pattern.

@I tutorialspoint

5. Python Forensics — Hash Function

A hash function is defined as the function that maps on a large amount of data to a fixed
value with a specified length. This function ensures that the same input results in the same
output, which is actually defined as a hash sum. Hash sum includes a characteristic with
specific information.

This function is practically impossible to revert. Thus, any third party attack like brute
force attack is practically impossible. Also, this kind of algorithm is called one-way
cryptographic algorithm.

An ideal cryptographic hash function has four main properties:
e It must be easy to compute the hash value for any given input.
e It must be infeasible to generate the original input from its hash.
e It must be infeasible to modify the input without changing the hash.

e It must be infeasible to find two different inputs with the same hash.

Example

Consider the following example which helps in matching passwords using characters in
hexadecimal format.

import uuid

import hashlib

def hash_password(password):
userid is used to generate a random number
salt = uuid.uuid4().hex #salt is stored in hexadecimal value

return hashlib.sha256(salt.encode() + password.encode()).hexdigest() + ':' + salt

def check_password(hashed_password, user_password):
hexdigest is used as an algorithm for storing passwords
password, salt = hashed_password.split(':")
return password == hashlib.sha256(salt.encode()

+ user_password.encode()).hexdigest()

new_pass = raw_input('Please enter required password ')
hashed_password = hash_password(new_pass)

print('The string to store in the db is: + hashed_password)

old_pass = raw_input('Re-enter new password ')

if check_password(hashed_password, old_pass):

I@’ tutorialspoint

EIMPLYEAEYLEARRMINEG

Python Forensics

print('Yuppie!! You entered the right password')
else:

print('Oops! I am sorry but the password does not match')

Flowchart

We have explained the logic of this program with the help of the following flowchart:

Start

Enter the
required
password

execute hash s

function with password
all the possible encrypted | Database
properties

l Match the passwords
in hash format

Yuppie!! You
Yos—pd entered the
right password

Re-enter the
password

Oops! | am

sorry but the
password does
not match

10

I@’ tutorialspoint

EIMPLYEAEYLEARRMINEG

Python Forensics

Output

Our code will produce the following output:

&8 C:\Windows\system32\cmd.exe r

D:\Python code>python encryption.py

Please enter required password radhikaomkardatar ‘
The string to store in the dbh is: 40856%964a%3bbha5%a13e50bBbh2d11cB649295677c645e87?
4h%?42e8ef61Bieheh:2dbh?73648bha84fe6908abBfeFe?767f17

Re—enter new password radhikaomkardatar

Yuppie?? You entered the right password

D:\Python code>python encryption.py

Please enter required password datar

The string to store in the db is: S5aebhcd%150ah3hd2527402f3a2653eadf87ad4a28eebhffc
B681ef895c34cBchea:bcba??9?Bef ?4568aacfdeadc2f6feb2

Re—enter new password omar

Oops? I am sorry but the password does not match

D:\Python code>

The password entered twice matches with the hash function. This ensures that the
password entered twice is accurate, which helps in gathering useful data and save them
in an encrypted format.

11

tutorialspoint

EIMPLYEAESYLEARNING

&

6. Python Forensics — Cracking an Encryption

In this chapter, we will learn about cracking a text data fetched during analysis and
evidence.

A plain text in cryptography is some normal readable text, such as a message. A cipher text,
on the other hand, is the output of an encryption algorithm fetched after you enter plain text.

Simple algorithm of how we turn a plain text message into a cipher text is the Caesar cipher,
invented by Julius Caesar to keep the plain text secret from his enemies. This cipher involves
shifting every letter in the message "forward" by three places in the alphabet.

Following is a demo illustration.

a->D
b->E
c->F

w->Z
X->A
y->B
z->C

Example

A message entered when you run a Python script gives all the possibilities of characters,
which is used for pattern evidence.

The types of pattern evidences used are as follows:

e Tire Tracks and Marks
e Impressions

¢ Fingerprints

Every biometric data comprises of vector data, which we need to crack to gather full-proof evidence.

The following Python code shows how you can produce a cipher text from plain text:

import sys
def decrypt(k,cipher):
plaintext = "'
for each in cipher:
p = (ord(each)-k) % 126
if p < 32:
p+=95
plaintext += chr(p)
print plaintext

def main(argv):

12

@ tutorialspoint

EIMPLYEAEYLEARRMINEG

Python Forensics

if (len(sys.argv) != 1):
sys.exit('Usage: cracking.py')

cipher = raw_input('Enter message: ')

for i in range(1,95,1):
decrypt(i,cipher)

if __name__ == "_main__":

main(sys.argv[1:])

Output

Now, check the output of this code. When we enter a simple text "Radhika", the program

will produce the following cipher text.

. C:XWihdows\gystemSZ\‘and =

D:\Python code>python cracking.py
Enter message: Radhika
Q*cghj"

P_bhfgi_

0”aefh”™

N1'degl

M_cdf\

LI["bcel

KZ lahdZ

JY\"acy

IRL_"h&

HUZ"™_all

GUY 1°*U

FUXN1_U

ETWIN"T

DSUZL 1S

B FAN

BQTRY [Q

APSUWRZP

EORUWYO

@I tutorialspoint

13

7. Python Forensics — Virtualization

Virtualization is the process of emulating IT systems such as servers, workstations,
networks, and storage. It is nothing but the creation of a virtual rather than actual version
of any operating system, a server, a storage device or network processes.

The main component which helps in emulation of virtual hardware is defined as a hyper-visor.

The following figure explains the two main types of system virtualization used.

app
application oS | OS 0sS..
operatingsystem | OS | OS | OS.. native apps hypervisor
hypervisor ¢ operating system
hardware hardware

Virtualization has been used in computational forensics in a number of ways. It helps the
analyst in such a way that the workstation can be used in a validated state for each
investigation. Data recovery is possible by attaching the dd image of a drive as a secondary
drive on a virtual machine particularly. The same machine can be used as a recovery
software to gather the evidences.

The following example helps in understanding the creation of a virtual machine with the
help of Python programming language.

Step 1: Let the virtual machine be named 'dummy1'.

Every virtual machine must have 512 MB of memory in minimum capacity, expressed in
bytes.

vm_memory = 512 * 1024 * 1024

Step 2: The virtual machine must be attached to the default cluster, which has been
calculated.

vm_cluster = api.clusters.get(name="Default")

Step 3: The virtual machine must boot from the virtual hard disk drive.

vm_os = params.OperatingSystem(boot=[params.Boot(dev="hd")])

All the options are combined into a virtual machine parameter object, before using the add
method of the vms collection to the virtual machine.

14

I@’ tutorialspoint

EIMPLYEAEYLEARRMINEG

Python Forensics

Example

Following is the complete Python script for adding a virtual machine.

from ovirtsdk.api import API #importing API library

from ovirtsdk.xml import params

try: #Api credentials is required for virtual machine
api = API(url="https://HOST",
username="Radhika",
password="a@123",

ca_file="ca.crt")

vm_name = "dummyl"

vm_memory = 512 * 1024 * 1024 #calculating the memory in bytes
vm_cluster = api.clusters.get(name="Default")

vm_template = api.templates.get(name="Blank")

vm_os = params.OperatingSystem(boot=[params.Boot(dev="hd")]) #assigning the
parameters to operating system

vm_params = params.VM(name=vm_name,
memory=vm_memory,
cluster=vm_cluster,
template=vm_template)
0S=vm_o0s)
try:
api.vms.add(vm=vm_params)
print "Virtual machine '%s' added." % vm_name #output if it is successful.
except Exception as ex:
print "Adding virtual machine '%s' failed: %s" % (vm_name, ex)

api.disconnect()

except Exception as ex:

print "Unexpected error: %s" % ex

15

@ \tutorialspoint

EIMPLYEAESYLEARNING

Python Forensics

Output

Our code will produce the following output:

BN C\Windows\system32\cmd.exe

D:\Python code>python virtualization.py
irtual machine ’‘dummyl’ added.

D:\Python code>

16

@I tutorialspoint

8. Python Forensics — Network Forensics

The scenario of modern network environments is such that investigating can be fraught
due to a number of difficulties. This can happen whether you are responding to a breach
support, investigating insider activities, performing assessments related to vulnerability,

or validating a regulatory compliance.
Concept of Network Programming

The following definitions are used in network programming.

e Client: Client is a part of client-server architecture of network programming which
runs on a personal computer and workstation.

e Server: The server is a part of client-server architecture that provides services to
other computer programs in the same or other computers.

¢ WebSockets: WebSockets provide a protocol between the client and the server,
which runs over a persistent TCP connection. Through this, bi-directional messages
can be sent between the TCP socket connection (simultaneously).

WebSockets come after many other technologies that allow the servers to send information
to the client. Other than handshaking the Upgrade Header, WebSockets is independent

from HTTP.
Client Server
>
Handshake (HTTP upgrade)
< connection opened
Bi-directional messages =
< open and persistent connection > 3
One side closes channel
< : >
connection closed

These protocols are used to validate the information which is sent or received by the third
party users. As encryption is one of the methods used for securing messages, it is also
important to secure the channel through which the messages have been transferred.

17

@ tutorialspoint

EIMPLYEAEYLEARRMINEG

Python Forensics

Consider the following Python program, which the client uses for handshaking.

client.py

import socket

create a socket object

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

get local machine name

host

socket.gethostname()

8080

port

connection to hostname on the port.

s.connect((host, port))

Receive no more than 1024 bytes
tm = s.recv(1024)
print("The client is waiting for connection™)

s.close()

Output

It will produce the following output:

C:A\Windows\system32icmd.exe = & S

ID:\Python code>python client_16.py
The client is waiting for connection

D:\Python code>

18

@I tutorialspoint

Python Forensics

The server accepting the request for communication channel will include the following
script.

server.py
import socket

import time

create a socket object
serversocket = socket.socket(

socket.AF_INET, socket.SOCK_STREAM)

get local machine name
host

socket.gethostname()

8080

port

bind to the port

serversocket.bind((host, port))

queue up to 5 requests

serversocket.listen(5)

while True:
establish a connection

clientsocket,addr = serversocket.accept()

print("Got a connection from %s" % str(addr))
currentTime = time.ctime(time.time()) + "\r\n"
clientsocket.send(currentTime.encode('ascii'))

clientsocket.close()

The client and server created with the help of Python programming listen to the host
number. Initially, the client sends a request to the server with respect to data sent in the
host number and the server accepts the request and sends a response immediately. This
way, we can have a secure channel of communication.

19

w \tutorialspoint

EIMPLYEAESYLEARNING

9. Python Forensics — Python Modules

Modules in Python programs help in organizing the code. They help in grouping related
code into a single module, which makes it easier to understand and use. It includes
arbitrarily named values, which can be used for binding and reference. In simple words, a
module is a file consisting of Python code which includes functions, classes, and variables.

The Python code for a module (file) is saved with .py extension which is compiled as and
when needed.

Example

def print_hello_func(par):

print "Hello : ", par

return

Import Statement

The Python source file can be used as a module by executing an import statement which
imports other packages or third-party libraries. The syntax used is as follows:

import modulel[, module2[,... moduleN]

When the Python interpreter encounters the import statement, it imports the module
specified which is present in the search path.

Example

Consider the following example.

#!/usr/bin/python

Import module support

import support

Now you can call defined function that module as follows

support.print_func("Radhika")

20

@ tutorialspoint

EIMPLYEAEYLEARRMINEG

Python Forensics

It will produce the following output:

&3

CA\Windows\system32\cmd.exe = | =

D:\Python code>python hello.py
He1llo : Radhika

D:\Python code>

A module is loaded only once, regardless of the number of times it has been imported by
Python code.

From...import statement

From attribute helps to import specific attributes from a module into a current namespace.
Here is its syntax.

from modname import namel[, name2[, ... nameN]]

Example

To import the function fibonacci from the module fib, use the following statement.

from fib import fibonacci

Locating Modules

When the module is being imported, the Python interpreter searches for the following
sequences:

e The current directory.

o If the module does not exist, Python then searches each directory in the shell
variable PYTHONPATH.

e If the shell variable location fails, Python checks the default path.

Computational forensics use Python modules and third-party modules to get the
information and extract evidence with better ease. Further chapters focus on the
implementation of modules to get the necessary output.

21

@I tutorialspoint

10. Python Forensics — Dshell and Scapy

DShell

Dshell is a Python-based network forensic analysis toolkit. This toolkit was developed by
the US Army Research Laboratory. The release of this open source toolkit was in the year
2014. The major focus of this toolkit is to make forensic investigations with ease.

The toolkit consists of large humber of decoders which are listed in the following table.

dns This is used to extract DNS related queries
reservedips Identifies the solutions for DNS problems
large-flows Listing of the netflows
rip-http It is used extract the files from the HTTP traffic
Protocols Used for identification of non-standard protocols

The US Army Laboratory has maintained the clone repository in GitHub in the following link:

https://github.com/USArmyResearchLab/Dshell

<) Cooe
Dshell 5 2 network forense analysss frameworek
114 p2bv 0wl i
mestey © New pull request Create new e Uptcud Nies fnd fhe @

@ dev135 commtied on GIEHUD toseipr [l et 47 * ha T . ! clednne
o

=

2

-

-

i

R README)

The clone consists of a script install-ubuntu.py () used for installation of this toolkit.

Once the installation is successful, it will automatically build the executables and
dependencies that will be used later.

22

@ tutorialspoint

EIMPLYEAEYLEARRMINEG

https://github.com/USArmyResearchLab/Dshell

Python Forensics

The dependencies are as follows:

dependencies = {
"Crypto": "crypto",
"dpkt": "dpkt",
"IPy": “ipy",
“pcap”: "pypcap”

}

This toolkit can be used against the pcap (packet capture) files, which is usually recorded
during the incidents or during the alert. These pcap files is either created by libpcap on
Linux platform or WinPcap on Windows platform.

Scapy

Scapy is a Python-based tool used to analyze and manipulate the network traffic.
Following is the link for Scapy toolkit:

http://www.secdev.org/projects/scapy/

This toolkit is used to analyze packet manipulation. It is very capable to decode packets
of a wide number of protocols and capture them. Scapy differs from the Dshell toolkit by
providing a detailed description to the investigator about network traffic. These
descriptions have been recorded in real time.

Scapy has the ability to plot using third-party tools or OS fingerprinting.

Consider the following example.

import scapy, GeoIP #Imports scapy and GeoIP toolkit

from scapy import *

geolp = GeoIP.new(GeoIP.GEOIP_MEMORY_CACHE) #locates the Geo IP address

def locatePackage(pkg):

src=pkg.getlayer(IP).src #gets source IP address

dst=pkg.getlayer(IP).dst #gets destination IP address

srcCountry = geolp.country code by addr(src) #tgets Country details of source

dstCountry
destination

geolp.country_code by addr(dst) #gets country details of

print src+"("+srcCountry+") >> "+dst+"("+dstCountry+")\n"

This script gives the detailed description of the country details in the network packet, who
are communicating with each other.

23

MPLYEAEYLEARNINEG

w Mtutorialspoint

http://www.secdev.org/projects/scapy/

The above script will produce the following output.

Python Forensics

C\Windows\system32\cmd.exe

D:\Python code>python dshell.py
src INDIA >> dst USA

D:\Python code>

@I tutorialspoint

24

11. Python Forensics — Searching

Searching is certainly one of the pillars of forensic investigation. Nowadays, search is
only as good as the investigator who is running the evidence.

Searching a keyword from the message plays a vital role in forensics, when we search for
an evidence with the help of a keyword. The knowledge of what is to be searched in a
particular file along with the ones in deleted files requires both experience and knowledge.

Python has various built-in mechanisms with standard library modules to support search
operation. Fundamentally, investigators use the search operation to find answers to

questions such as "who", "what", "where", "when", etc.

Example

In the following example, we have declared two strings and then, we have used the find
function to check whether the first string contains the second string or not.

Searching a particular word from a message

strl = "This is a string example for Computational forensics of gathering
evidence!";

str2 = "string";

print strl.find(str2)
print strl.find(str2, 10)
print strl.find(str2, 40)

The above script will produce the following output.

D:\Python code>

“find” function in Python helps in searching a keyword in a message or a paragraph. This
is critical in collecting appropriate evidence.

25

@ tutorialspoint

12. Python Forensics — Indexing

Indexing actually provides the investigator have a complete look at a file and gather
potential evidence from it. The evidence could be contained within a file, a disk image, a
memory snapshot, or a network trace.

Indexing helps in reducing time for time-consuming tasks such as keyword searching.
Forensic investigation also involves interactive searching phase, where the index is used
to rapidly locate keywords.

Indexing also helps in listing the keywords in a sorted list.

Example

The following example shows how you can use indexing in Python.

aList = [123, 'sample’', 'zara', 'indexing'];

print "Index for sample :
print "Index for indexing :

, alList.index('sample')
", alList.index('indexing')

strl
str2

"This is sample message for forensic investigation indexing";
"sample";

print "Index of the character keyword found is
print stril.index(str2)

The above script will produce the following output.

B C:\Windows\system32\cmd.exe = B X

D:\Python code>python indexing.py
Index for sample = 1

» indexing = 3
Index of the character keyword found is

8

BT |

D:\Python code>

26

w tutorialspoint

13. Python Forensics — Python Imaging Library

Extracting valuable information from the resources available is a vital part of digital
forensics. Getting access to all the information available is essential for an investigation
process as it helps in retrieving appropriate evidence.

Resources that contain data can be either simple data structures such as databases or
complex data structures such as a JPEG image. Simple data structures can be easily
accessed using simple desktop tools, while extracting information from complex data
structures require sophisticated programming tools.

Python Imaging Library

The Python Imaging Library (PIL) adds image processing capabilities to your Python
interpreter. This library supports many file formats, and provides powerful image
processing and graphics capabilities. You can download the source files of PIL from:
http://www.pythonware.com/products/pil/

The following illustration shows the complete flow diagram of extracting data from images

(complex data structures) in PIL.

\/

[Imponing Images
for Forensics

Vi

Use PIL for
extracting data

V

Represent data
in Array format

Vi

Organize the
data for Forensic
evidence

27

I@’ tutorialspoint

EIMPLYEAEYLEARRMINEG

http://www.pythonware.com/products/pil/

Python Forensics

Example

Now, let’s have a programming example to understand how it actually works.

Step 1: Suppose we have the following image from where we need to extract information.

Step 2: When we open this image using PIL, it will first note the necessary points required
for extracting evidence, which includes various pixel values. Here is the code to open the
image and record its pixel values:

from PIL import Image

im = Image.open('Capture.jpeg', 'r'")

pix_val = list(im.getdata())

pix_val_flat = [x for sets in pix_val for x in sets]

print pix_val_flat

Step 3: Our code will produce the following output, after extracting the pixel values of the image.

:\Radhika Documents\Python and Forensics\Python>

The output delivered represents the pixel values of RGB combination, which gives a better picture
of what data is needed for evidence. The data fetched is represented in the form of an array.

28

MPLYEAEYLEARNINEG

@ Mtutorialspoint

14. Python Forensics — Mobile Forensics

Forensic investigation and analysis of standard computer hardware such as hard disks
have developed into a stable discipline and is followed with the help of techniques to
analyze non-standard hardware or transient evidence.

Although smartphones are increasingly being used in digital investigations, they are still
considered as non-standard.

Forensic Analysis

Forensic investigations search for data such as received calls or dialed numbers from the
smartphone. It can include text messages, photos, or any other incriminating evidence. Most
smartphones have screen-locking features using passwords or alphanumeric characters.

Here, we will take an example to show how Python can help crack the screen-locking
password to retrieve data from a smartphone.

Manual Examination

Android supports password lock with PIN number or alphanumeric password. The limit of
both passphrases are required to be between 4 and 16 digits or characters. The password
of a smartphone is stored in the Android system in a special file called password.key in
/data/system.

Android stores a salted SHAl-hashsum and MD5-hashsum of the password. These
passwords can be processed in the following code.

public byte[] passwordToHash(String password) {
if (password == null) {
return null;
}
String algo = null;
byte[] hashed = null;
try {
byte[] saltedPassword = (password + getSalt()).getBytes();
byte[] shal = MessageDigest.getInstance(algo = "SHA-1").digest(saltedPassword);
byte[] md5 = MessageDigest.getInstance(algo = "MD5").digest(saltedPassword);
hashed = (toHex(shal) + toHex(md5)).getBytes();
} catch (NoSuchAlgorithmException e) {

Log.w(TAG, "Failed to encode string because of missing algorithm:

}

return hashed;}

+ algo);

It is not feasible to crack the password with the help of dictionary attack as the hashed
password is stored in a salt file. This salt is a string of hexadecimal representation of a random
integer of 64 bit. It is easy to access the salt by using Rooted Smartphone or JTAG Adapter.

29

I@’ tutorialspoint

EIMPLYEAEYLEARRMINEG

Python Forensics

Rooted Smartphone

The dump of the file /data/system/password.key is stored in SQLite database under
the lockscreen.password_salt key. Under settings.db, the password is stored and the
value is clearly visible in the following screenshot.

Table: | secure s - New Record Delete Record
_id name value

45 70 use_google_mail 1
46 71 backup_enabled 1
47 72 backup_provisioned 1
48 77 disabled_system_input_methods

49 81 location_pdr_enabled 1
50 87 mobile_data 1
51 94 wifi_ap_passwd swisskom

52 97 wifi_ap_security 0
53 142 wifi_saved_state 0
54 143 wifi_on 1
55 188 lockscreen.patterneverchosen 1
56 190 lock_pattern_visible_pattern 1
57 191 Jock_pattern_tactile_feedback_enabled 0
58 195 media_scanning_finished 0
59 197 lockscrean.password_salt 339386755700
60 201 lockscreen.password_type 65536
6L 202 lock_pattern_autolock 1

JTAG Adapter

A special hardware known as JTAG (Joint Test Action Group) adapter can be used to access
the salt. Similarly, a Riff-Box or a JIG-Adapter can also be used for the same
functionality.

Using the information obtained from Riff-box, we can find the position of the encrypted
data, i.e., the salt. Following are the rules:

e Search for the associated string "lockscreen.password_salt."
e The byte represents the actual width of the salt, which is its length.

e This is the length which is actually searched for to get the stored password/pin of
the smartphones.

These set of rules help in getting the appropriate salt data.

string length salt length

0 00 00 90 B0 DO PO B0 0O PO 0O 0O 69 88 00 00 00 PO 00 00 PO 6O

al a X
00 60 00 00 60 o 0 00 00 60 B0 00 PO 00 BB 30 51 45 B4 @@ 3D 35 6C 6F 63 6B 73 63 72 65 65 B6E ZE X) @ E-*=5lockscreen.
78 61 73 73 77 6l 1 6C 74 2D 31 38 32 31 37 34 37 33 33 39 33 39 36 37 35 35 37 30 .30 2A 81 3F B4 password_salt-1821747339396755700% 7%
65 6!

aa 57 6C 6F 63 4 74 65 72 6E 5F 74 61 63 74 69 6C 65 6 5 64 62 61 63 6B 5F 65 6E 61 62 MW lock_pattern_tactile_feedback_enab
string: lockscreen.password_salt salt

/0 B0 00 PO 0O

la]
la]
F

@ T e
@] @D
[
@@

30

M Mtutorialspoint

EIMPLYEAESBYLEARNING

15. Python Forensics — Network Time Protocol

The most widely used protocol for synchronizing time and which has been widely accepted
as a practice is done through Network Time Protocol (NTP).

NTP uses the User Datagram Protocol (UDP) which uses minimum time to communicate
the packets between the server and the client who wish to synchronize with the given time

source.
NTP Server NTP Server
a < Internet =
= —
s — -
Ex‘ema‘ HOSY (<= =+~ Exlen(" ROuter BaS"Dn HOS'
II Penimeter Nelwork

Interior Router |e===)

I ouory 1 I internal Network
4 &

™ »
T [T TR
Client Host Server Host

Features of Network Time Protocol are as follows:

e The default server port is 123.

e This protocol consists of many accessible time servers synchronized to national
laboratories.

e The NTP protocol standard is governed by the IETF and the Proposed Standard is
RFC 5905, titled “Network Time Protocol Version 4: Protocol and Algorithms
Specification” [NTP RFC]

e Operating systems, programs, and applications use NTP to synchronize time in a
proper way.

In this chapter, we will focus on the usage of NTP with Python, which is feasible from third-
party Python Library ntplib. This library efficiently handles the heavy lifting, which
compares the results to my local system clock.

31

I@’ tutorialspoint

EIMPLYEAEYLEARRMINEG

Python Forensics

Installing the NTP Library

The ntplib is available for download at https://pypi.python.org/pypi/ntplib/ as shown in
the following figure.

The library provides a simple interface to NTP servers with the help of methods that can
translate NTP protocol fields. This helps access other key values such as leap seconds.

C »
g - = search
@ puython
Pachkags Index - mipat 3

ntplib 0.3.3 T —
Py ¢ Rl
De=aor LAY
Thes rodule (e @ sevgin edortace 30 gy NTP sinvors from Pyhor wazr wath Coonie

¥
M a0 prosedes Uity Tunchions 0 Yanslile NTP felds vafues (0 leat (mode. loap indicalor) Since 13 pare Python, and _
ordy degpwends o tree mextubesy € shoukt work on ary platioem: with & Python imgiermesed oon v -
2 0042200

The following Python program helps in understanding the usage of NTP.

import ntplib

import time

NIST="nistl-macon.macon.ga.us'

ntp=ntplib.NTPClient()

ntpResponse=ntp.request(NIST)

if (ntpResponse):
now=time.time()

diff=now-ntpResponse.tx_time

print diff;

32

@ tutorialspoint

The above program will produce the following output.

Python Forensics

C\Windows\system32\cmd.exe

D:\Python code>python ntp.py
2 .81850914955

D:\Python code>

The difference in time is calculated in the above program. These calculations help in
forensic investigations. The network data obtained is fundamentally different than the

analysis of data found on the hard drive.

The difference in time zones or getting accurate time zones can help in gathering evidence

for capturing the messages through this protocol.

@I tutorialspoint

33

16. Python Forensics — Multiprocessing Support

Forensic specialists normally find it difficult to apply digital solutions to analyze the
mountains of digital evidence in common crimes. Most digital investigation tools are single
threaded and they can execute only one command at a time.

In this chapter, we will focus on the multiprocessing capabilities of Python, which can
relate to the common forensic challenges.

Multiprocessing

Multiprocessing is defined as the computer system's ability to support more than one
process. The operating systems that support multiprocessing enable several programs to
run concurrently.

There are various types of multiprocessing such as symmetric and asymmetric
processing. The following diagram refers to a symmetric multiprocessing system which
is usually followed in forensic investigation.

CPU

CPU 2 CPU 3 CPU 4

Example

The following code shows how different processes are listed internally in Python programming.

import random

import multiprocessing

def list _append(count, id, out_list):
#appends the count of number of processes which takes place at a time
for i in range(count):

out_list.append(random.random())

if __name__ == "_main__"
size = 999
procs = 2

34

@ tutorialspoint

EIMPLYEAEYLEARRMINEG

Python Forensics

Create a list of jobs and then iterate through
the number of processes appending each process to
the job list
jobs = []
for 1 in range(®, procs):
out_list = list() #list of processes

processl = multiprocessing.Process(target=1ist_append, args=(size,
i, out_list))

appends the list of processes

jobs.append(process)

Calculate the random number of processes
for j in jobs:

j.start() #initiate the process
After the processes have finished execution
for j in jobs:

j.join()

print "List processing complete."

Here, the function list_append() helps in listing the set of processes in the system.

Output

Our code will produce the following output:

C\Windows\system32\cmd.exe

D:\Python code>python multi-processori8.py
List processing complete.

D:\Python code>

35

&

tutorialspoint

EIMPLYEAESYLEARNING

17. Python Forensics — Memory & Forensics

In this chapter, we will focus on investigating the volatile memory with the help of
Volatility, a Python-based forensics framework applicable on the following platforms:
Android and Linux.

Volatile Memory

Volatile memory is a type of storage where the contents get erased when the system's
power is turned off or interrupted. RAM is the best example of a volatile memory. It means,
if you were working on a document that has not been saved to a non-volatile memory,
such as a hard drive, and the computer lost power, then all the data will be lost.

In general, volatile memory forensics follow the same pattern as other forensic
investigations:

e Selecting the target of the investigation
e Acquiring forensic data
e Forensic analysis
The basic volatility plugins which are used for Android gathers RAM dump for analysis.

Once the RAM dump is gathered for analysis, it is important to start hunting for malware
in RAM.

YARA Rules

YARA is a popular tool which provides a robust language, is compatible with Perl-based
Regular Expressions, and is used to examine the suspected files/directories and match
strings.

In this section, we will use YARA based on the pattern matching implementation and
combine them with utility power. The complete process will be beneficial for forensic
analysis.

Example

Consider the following code. This code helps in extracting the code.

import operator
import os

import sys

sys.path.insert(0, os.getcwd())
import plyara.interp as interp

Plyara is a script that lexes and parses a file consisting of one more Yara
rules into a python dictionary representation.

36

I@’ tutorialspoint

EIMPLYEAEYLEARRMINEG

Python Forensics

if __name__ == '_main__"':
file_to_analyze = sys.argv[1]

rulesDict = interp.parseString(open(file_to_analyze).read())
authors = {}

imps = {}

meta_keys = {}

max_strings = []

max_string len = @

tags = {}

rule_count = @

for rule in rulesDict:

rule_count += 1

Imports
if 'imports' in rule:
for imp in rule['imports']:
imp = imp.replace('"',"'")
if imp in imps:
imps[imp] += 1
else:

imps[imp] =1

Tags
if 'tags' in rule:
for tag in rule['tags']:
if tag in tags:
tags[tag] += 1
else:

tags[tag] =1

Metadata
if 'metadata’ in rule:
for key in rule['metadata’]:
if key in meta_keys:

meta_keys[key] += 1

37

MPLYEAEYLEARNINEG

w Mtutorialspoint

Python Forensics

else:
meta_keys[key] = 1
if key in ['Author', 'author']:
if rule['metadata’][key] in authors:
authors[rule['metadata’][key]] += 1
else:

authors[rule['metadata’][key]] =1

#Strings
if 'strings' in rule:
for strr in rule['strings']:
if len(strr['value']) > max_string len:
max_string_len = len(strr['value'])
max_strings = [(rule['rule_name'], strr['name'], strr['value'])]
elif len(strr['value']) == max_string_len:

max_strings.append((rule['rule_name'], strr['key'], strr['value']))

print("\nThe number of rules implemented" + str(rule_count))

ordered_meta_keys = sorted(meta_keys.items(), key=operator.itemgetter(1l), reverse=True)
ordered_authors = sorted(authors.items(), key=operator.itemgetter(l), reverse=True)
ordered_imps = sorted(imps.items(), key=operator.itemgetter(1l), reverse=True)

ordered_tags = sorted(tags.items(), key=operator.itemgetter(1l), reverse=True)

The above code will produce the following output.

B¥ C:\Windows\system32\cmd.exe - - 12 = P

D:\Radhika\Python Code>python yara.py

The number of rules implemented :5

D:\Radhika\Python Code>

The number of YARA rules implemented helps in giving a better picture of the suspected
files. Indirectly, the list of suspected files help in gathering appropriate information for
forensics.

Following is the source code in github: https://github.com/radhikascs/Python yara

38

&

tutorialspoint

EIMPLYEAESYLEARNING

https://github.com/radhikascs/Python_yara

18. Python Forensics — Forensics in Linux

The major concern of digital investigations is to secure important evidences or data with
encryption or any other format. The basic example is storing the passwords. It is therefore
necessary to understand the usage of Linux operating system for digital forensic
implementation to secure these valuable data.

Information for all the local users are mostly stored in the following two files:

o /etc/passwd
e etc/shadow
The first one is mandatory, which stores all the passwords. The second file is optional and

it stores information about the local users including the hashed passwords.

Issues arise regarding the security issue of storing the password information in a file,
which is readable by every user. Therefore, hashed passwords are stored in
/etc/passwd, where the content is replaced by a special value "x".

The corresponding hashes have to be looked up in /etc/shadow. The settings in
/etc/passwd may override the details in /etc/shadow.

Both the text files in Linux include one entry per line and the entry consists of multiple
fields, separated by colons.

The format of /etc/passwd is as follows:

Field

Name Description

Username | This field consists of the attributes of human-readable format

Password It consists of the password in an encoded form according to the Posix
hash crypt function

If the hash password is saved as empty, then the corresponding user will not require any
password to log into the system. If this field contains a value that cannot be generated by
the hash algorithm, such as an exclamation mark, then the user cannot log on using a
password.

A user with a locked password can still log on using other authentication mechanisms, for
example, SSH keys. As mentioned earlier, the special value "x" means that the password
hash has to be found in the shadow file.

The password hash includes the following:

e Encrypted salt: The encrypted salt helps maintain the screen locks, pins, and
passwords.

¢ Numerical user ID: This field denotes the ID of the user. The Linux kernel assigns
this user ID to the system.

39

@ tutorialspoint

EIMPLYEAEYLEARRMINEG

Python Forensics

e Numerical group ID: This field refers to the primary group of the user.
e Home directory: The new processes are started with a reference of this directory.

e Command shell: This optional field denotes the default shell that is to be started
after a successful login to the system.

Digital forensics include collecting the information which is relevant to tracking an
evidence. Hence, the user ids are useful in maintaining the records.

Using Python, all of this information can be automatically analyzed for the Indicators of
Analysis, reconstructing the recent system activity. Tracking is simple and easy with the
implementation of Linux Shell.

Python Programming with Linux

import sys
import hashlib

import getpass

def main(argv):

print '\nUser & Password Storage Program in Linux for forensic detection v.01\n'

if raw_input('The file ' + sys.argv[1l] + ' will be erased or overwrite if
it exists .\nDo you wish to continue (Y/n): ') not in ('Y','y") :

sys.exit('\nChanges were not recorded\n')

user_name = raw_input('Please Enter a User Name: ')
password = hashlib.sha224(getpass.getpass('Please Enter a Password:')).hexdigest()

Passwords which are hashed

try:
file_conn = open(sys.argv[1l],'w")
file_conn.write(user_name + '\n')
file_conn.write(password + '\n')
file conn.close()
except:
sys.exit('There was a problem writing the passwords to file!')
if __name__ == "__main__":

main(sys.argv[1:])

40

MPLYEAEYLEARNINEG

@ Mtutorialspoint

Python Forensics

Output

The password is stored in a hexadecimal format in pass_db.txt as shown in the following
screenshot. The text files are saved for further use in computational forensics.

j pass_db - Notepad = & ES

File Edit Format View Help

admin -
&C6976e5b5410415bde908bdd deel 5dfbl167a9c873fcdbb8aslifaef2abd483918

41

@ tutorialspoint

EIMPLYEAESYLEARNING

19. Python Forensics — Indicators of Compromise

Indicators of Compromise (IOC) is defined as "pieces of forensic data, which includes data
found in system log entries or files, that identify potentially malicious activity on a system
or network."

By monitoring for IOC, organizations can detect attacks and act quickly to prevent such
breaches from occurring or limit damages by stopping attacks in earlier stages.

There are some use-cases, which allow querying the forensic artifacts such as:

e Looking for a specific file by MD5
e Searching for a specific entity, which is actually stored in the memory

e Specific entry or set of entries, which is stored in Windows registry

The combination of all the above provides better results in searching artifacts. As
mentioned above, Windows registry gives a perfect platform in generating and maintaining
I0C, which directly helps in computational forensics.

Methodology

e Look for the locations in the file system and specifically for now into Windows
registry.

e Search for the set of artifacts, which have been designed by forensic tools.

e Look for the signs of any adverse activities.

Investigative Life Cycle
Investigative Life Cycle follows IOC and it searches for specific entries in a registry.

e Stage 1: Initial Evidence — Evidence of the compromise is detected either on a
host or on the network. The responders will investigate and identify the exact
solution, which is a concrete forensic indicator.

e Stage 2: Create IOCs for Host & Network — Following the data collected, the
IOC is created, which is easily possible with Windows registry. The flexibility of
OpenIOC gives limitless humber of permutations on how an Indicator can be
crafted.

e Stage 3: Deploy IOCs in the Enterprise — Once the specified I0OC has been
created, the investigator will deploy these technologies with the help of API in
Windows registers.

¢ Stage 4: Identification of Suspects — The deployment of IOC helps in the
identification of suspects in a normal way. Even additional systems will be identified.

e Stage 5: Collect and Analyze Evidence — Evidences against the suspects are
gathered and analyzed accordingly.

42

I@’ tutorialspoint

EIMPLYEAEYLEARRMINEG

Python Forensics

e Stage 6: Refine & Create New IOCs — The investigative team can create new
I0OCs based of their evidences and data found in the enterprise and additional
intelligence, and continue to refine their cycle.

The following illustration shows the phases of Investigative Life Cycle:

BN —

Network 10Cs

Host 10Cs
Deploy 10Cs
LR 0ala review
Forensic analysis . 1DS/IPS
Log analysis ITERATIVE » HIDSHIPS
Malware analysis PROCESS . SIEM
Faise positive « Investigative tools
identincation
-
Preserve/Collect Evidence Identity Suspect Systems

43

@ tutorialspoint

EIMPLYEAESYLEARNING

20. Python Forensics — Implementation of Cloud

Cloud computing can be defined as a collection of hosted services provided to users over
the Internet. It enables organizations to consume or even compute the resource, which
includes Virtual Machines (VMs), storage, or an application as a utility.

One of the most important advantages of building applications in Python programming
language is that it includes the ability to deploy applications virtually on any platform,
which includes cloud as well. It implies that Python can be executed on cloud servers and
can also be launched on handy devices such as desktop, tablet, or smartphone.

One of the interesting perspectives is creating a cloud base with the generation of
Rainbow tables. It helps in integrating single and multiprocessing versions of the
application, which requires some considerations.

Pi Cloud

Pi Cloud is the cloud computing platform, which integrates Python programming language
with the computing power of Amazon Web Services.

L C & P ury T Py sythen g “ 9
@ python =
Pockags Indes clowd 28"
PACKACE INOTH cloud 2.8 S
apr

P FCiod chent .soe Brary []

¢ rewe shomsdars —

S (latedd 10 2000 P ioud = 2 cood comgutng platiorm that miegrates o the Python Frogramming Language It

1 . eriabien you 10 leverage he computing power of Amaton Web Services wihout harang o rarage. mardan of Cotfigure

Ll st servers

"
MY Sgeam Vihen Lesng thes Python Brary hnown 25 coud PiCioud sl ifegrate searmiessly 10 yiag eestng rode tase To officad

g ® he executon of 3 Amchion to our servers, i you must do 6 pass your desred functon mio the clood irary Prlioud wit SEN0G Ik 1epad

run e function on B hgh-performance chister As you nun mote SaSons, our Asder so-scakes 10 mMest your
CATOULANONG Pects

Betore usng e pockage you wil nesd % 300 up a PClood account

WLMENTATION The chood [rary 00 faflipes & semulator niech cam b used wihout & PCioud 2000t The smuAasor Uses the muSproosssry ibeary 0 Cwate 8 sripped

o versen of e PCloud sarvice. Ths semudated serace can S im ot localy soross o OP) oo

K COMMand-ine example

Let’s take a look at an example of implementing Pi clouds with rainbow tables.

Rainbow Tables

A rainbow table is defined as a listing of all possible plain text permutations of encrypted
passwords specific to a given hash algorithm.

¢ Rainbow tables follow a standard pattern, which creates a list of hashed passwords.

e A text file is used to generate passwords, which include characters or plain text of
passwords to be encrypted.

e The file is used by Pi cloud, which calls the main function to be stored.

e The output of hashed passwords is stored in the text file as well.

This algorithm can be used to save passwords in the database as well and have a backup
storage in the cloud system.

44

I@’ tutorialspoint

EIMPLYEAEYLEARRMINEG

Python Forensics

The following in-built program creates a list of encrypted passwords in a text file.

import os

import random

import hashlib

import string

import enchant #Rainbow tables with enchant
import cloud #importing pi-cloud

def randomword(length):

return ''.join(random.choice(string.lowercase) for i in range(length))

print('Author- Radhika Subramanian')
def mainroutine():
engdict = enchant.Dict("en_US")

fileb = open("password.txt","a+")

Capture the values from the text file named password

while True:
randomword® = randomword(6)
if engdict.check(randomword®) == True:
randomkey® = randomword@+str(random.randint(0,99))
elif engdict.check(randomword®) == False:
englist = engdict.suggest(randomworde)
if len(englist) > o:
randomkey® = englist[@]+str(random.randint(0,99))
else:

randomkey® = randomword@+str(random.randint(0,99))

randomword3 = randomword(5)
if engdict.check(randomword3) == True:

randomkey3 = randomword3+str(random.randint(0,99))
elif engdict.check(randomword3) == False:

englist = engdict.suggest(randomword3)

if len(englist) > o:

randomkey3 = englist[@]+str(random.randint(e,99))

else:

randomkey3 = randomword3+str(random.randint(0,99))

45

MPLYEAEYLEARNINEG

w Mtutorialspoint

Python Forensics

if 'randomkey@' and 'randomkey3' and 'randomkeyl' in locals():

whasher@ = hashlib.new("md5")

whashero.update(randomkey®)

whasher3 = hashlib.new("md5")

whasher3.update(randomkey3)

whasherl = hashlib.new("md5")

whasherl.update(randomkeyl)

print(randomkey@+" + "+str(whasherd.hexdigest())+"\n")

print(randomkey3+" + "+str(whasher3.hexdigest())+"\n")

print(randomkeyl+" + "+str(whasherl.hexdigest())+"\n")

fileb.write(randomkey@+" + "+str(whasher@.hexdigest())+"\n")

fileb.write(randomkey3+" + "+str(whasher3.hexdigest())+"\n")

fileb.write(randomkeyl+" + "+str(whasherl.hexdigest())+"\n")

jid = cloud.call(randomword) #square(3) evaluated on PiCloud

cloud.result(jid)
print('Value added to cloud')
print('Password added")

mainroutine()

Output

This code will produce the following output:

Bl Ch\Windows\system32iomd.exe - python rainbow.py
Microsoft Windows [Uersion 6.1.76H81]

C:sUsersssifed ..
C:slsers>D:
D:%>cd Radhika

D:~Radhika>cd "Python Code"

D:“Radhika~Python Code>python rainhow.py
Auhtor— Radhika Subramanian
Pazzword added

@I tutorialspoint

Copyright <c> 2007 Microsoft Corporation.

All rights reserved.

46

Python Forensics

The passwords are stored in the text files, which is visible, as shown in the following
screenshot.

7] password - Notepad (=] o]

File Edit Format View Help
dmin "

21232f297a57a5a743894a0e43801fc3

47

@ tutorialspoint

EIMPLYEAESYLEARNING

